Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.821
Filtrar
1.
Zebrafish ; 21(2): 171-176, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621215

RESUMO

The transgenic (TG) zebrafish allows researchers to bio-image specific biological phenomena in cells and tissues in vivo. We established TG lines to monitor changes in the ovaries of live fish. The original TG line with ovarian fluorescence was occasionally established. Although the cDNA integrated into the line was constructed for the expression of enhanced green fluorescent protein (EGFP) driven by the medaka ß-actin promoter, the expression of EGFP is restricted to the oocytes and gills in adult fish. Furthermore, we found that germinal vesicles (GVs) in oocytes of the established line can be observed by relatively strong fluorescence around the GV. In this study, we tried to capture the dynamic processes of germinal vesicle breakdown (GVBD) during meiotic cell division using the GV fluorescent oocytes. As a result, GV migration and GVBD could be monitored in real time. We also succeeded in observing actin filaments involved in the migration of GV to the animal pole. This strain can be used for education in the process of oocyte meiotic cell division.


Assuntos
Ectoderma/embriologia , Estruturas Embrionárias , Ovário , Peixe-Zebra , Feminino , Animais , Oócitos , Animais Geneticamente Modificados , Divisão Celular
2.
Dev Cell ; 59(8): 941-960, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38653193

RESUMO

In recent years, the pursuit of inducing the trophoblast stem cell (TSC) state has gained prominence as a compelling research objective, illuminating the establishment of the trophoblast lineage and unlocking insights into early embryogenesis. In this review, we examine how advancements in diverse technologies, including in vivo time course transcriptomics, cellular reprogramming to TSC state, chemical induction of totipotent stem-cell-like state, and stem-cell-based embryo-like structures, have enriched our insights into the intricate molecular mechanisms and signaling pathways that define the mouse and human trophectoderm/TSC states. We delve into disparities between mouse and human trophectoderm/TSC fate establishment, with a special emphasis on the intriguing role of pluripotency in this context. Additionally, we re-evaluate recent findings concerning the potential of totipotent-stem-like cells and embryo-like structures to fully manifest the trophectoderm/trophoblast lineage's capabilities. Lastly, we briefly discuss the potential applications of induced TSCs in pregnancy-related disease modeling.


Assuntos
Diferenciação Celular , Linhagem da Célula , Trofoblastos , Trofoblastos/citologia , Trofoblastos/metabolismo , Animais , Humanos , Camundongos , Feminino , Gravidez , Ectoderma/metabolismo , Ectoderma/citologia , Desenvolvimento Embrionário , Reprogramação Celular
3.
Int J Dev Biol ; 68(1): 25-37, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591691

RESUMO

In vertebrate development, ectoderm is specified into neural plate (NP), neural plate border (NPB), and epidermis. Although such patterning is thought to be achieved by molecular concentration gradients, it has been revealed, mainly by in vitro analysis, that mechanical force can regulate cell specification. During in vivo patterning, cells deform and migrate, and this applies force to surrounding tissues, shaping the embryo. However, the role of mechanical force for cell specification in vivo is largely unknown. In this study, with an aspiration assay and atomic force microscopy, we have demonstrated that tension on ectodermal cells decreases laterally from the midline in Xenopus early neurula. Ectopically applied force laterally expanded the neural crest (NC) region, a derivative of the NPB, whereas force relaxation suppressed it. Furthermore, force application activated both the FGF and Wnt pathways, which are required for NC formation during neuroectodermal patterning. Taken together, mechanical force is necessary for NC formation in order to regulate signaling pathways. Furthermore, molecular signals specify the NP and generate force on neighboring tissue, the NPB, with its closure. This force activates signals, possibly determining the appropriate width of a narrow tissue, the NC.


Assuntos
Crista Neural , Proteínas de Xenopus , Animais , Crista Neural/fisiologia , Xenopus laevis/metabolismo , Proteínas de Xenopus/metabolismo , Ectoderma/metabolismo , Via de Sinalização Wnt , Regulação da Expressão Gênica no Desenvolvimento
4.
Curr Top Dev Biol ; 157: 67-82, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556459

RESUMO

Transplantation experiments have shown that a true organizer provides instructive signals that induce and pattern ectopic structures in the responding tissue. Here, we review craniofacial experiments to identify tissues with organizer properties and signals with organizer properties. In particular, we evaluate whether transformation of identity took place in the mesenchyme. Using these stringent criteria, we find the strongest evidence for the avian foregut ectoderm. Transplanting a piece of quail foregut endoderm to a host chicken embryo caused ectopic beaks to form derived from chicken mesenchyme. The beak identity, whether upper or lower as well as orientation, was controlled by the original anterior-posterior position of the donor endoderm. There is also good evidence that the nasal pit is necessary and sufficient for lateral nasal patterning. Finally, we review signals that have organizer properties on their own without the need for tissue transplants. Mouse germline knockouts of the endothelin pathway result in transformation of identity of the mandible into a maxilla. Application of noggin-soaked beads to post-migratory neural crest cells transforms maxillary identity. This suggests that endothelin or noggin rich ectoderm could be organizers (not tested). In conclusion, craniofacial, neural crest-derived mesenchyme is competent to respond to tissues with organizer properties, also originating in the head. In future, we can exploit such well defined systems to dissect the molecular changes that ultimately lead to patterning of the upper and lower jaw.


Assuntos
Galinhas , Ectoderma , Embrião de Galinha , Animais , Camundongos , Arcada Osseodentária , Crista Neural , Endotelinas , Padronização Corporal
5.
Sci Adv ; 10(9): eadh7748, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427729

RESUMO

Mechanisms specifying amniotic ectoderm and surface ectoderm are unresolved in humans due to their close similarities in expression patterns and signal requirements. This lack of knowledge hinders the development of protocols to accurately model human embryogenesis. Here, we developed a human pluripotent stem cell model to investigate the divergence between amniotic and surface ectoderms. In the established culture system, cells differentiated into functional amnioblast-like cells. Single-cell RNA sequencing analyses of amnioblast differentiation revealed an intermediate cell state with enhanced surface ectoderm gene expression. Furthermore, when the differentiation started at the confluent condition, cells retained the expression profile of surface ectoderm. Collectively, we propose that human amniotic ectoderm and surface ectoderm are specified along a common nonneural ectoderm trajectory based on cell density. Our culture system also generated extraembryonic mesoderm-like cells from the primed pluripotent state. Together, this study provides an integrative understanding of the human nonneural ectoderm development and a model for embryonic and extraembryonic human development around gastrulation.


Assuntos
Ectoderma , Células-Tronco Pluripotentes , Humanos , Ectoderma/metabolismo , Diferenciação Celular/genética , Mesoderma
6.
Results Probl Cell Differ ; 72: 61-80, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38509252

RESUMO

Studies using early-stage avian embryos have substantially impacted developmental biology, through the availability of simple culture methods and easiness in tissue manipulation. However, the regulations underlying brain and head development, a central issue of developmental biology, have not been investigated systematically. Yoshihi et al. (2022a) devised a technique to randomly label the epiblast cells with a green fluorescent protein before their development into the brain tissue. This technique was combined with grafting a node or node-derived anterior mesendoderm labeled with a cherry-colored fluorescent protein. Then cellular events were live-recorded over 18 hours during the brain and head development. The live imaging-based analyses identified previously undescribed mechanisms central to brain development: all anterior epiblast cells have a potential to develop into the brain tissues and their gathering onto a proximal anterior mesendoderm forms a brain primordium whereas the remaining cells develop into the covering head ectoderm. The analyses also ruled out the direct participation of the node's activity in the brain development. Yoshihi et al. (2022a) also demonstrate how the enigmatic data from classical models can be reinterpreted in the new model.This chapter was adapted from Yoshihi K, Iida H, Teramoto M, Ishii Y, Kato K, Kondoh H. (2022b). Epiblast cells gather onto the anterior mesendoderm and initiate brain development without the direct involvement of the node in avian embryos: Insights from broad-field live imaging. Front Cell Dev Biol. 10:1019845. doi: 10.3389/fcell.2022.1019845.


Assuntos
Gástrula , Camadas Germinativas , Camadas Germinativas/metabolismo , Ectoderma/metabolismo , Desenvolvimento Embrionário , Encéfalo
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(1): 119-128, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38293983

RESUMO

OBJECTIVE: To investigate the potential value of exosomes derived from rat ectoderm mesenchymal stem cells (EMSCs-exo) for repairing secondary spinal cord injury. METHODS: EMSCs-exo were obtained using ultracentrifugation from EMSCs isolated from rat nasal mucosa, identified by transmission electron microscope, nanoparticle tracking analysis (NTA), and Western blotting, and quantified using the BCA method. Neonatal rat microglia purified by differential attachment were induced with 100 µg/L lipopolysaccharide (LPS) and treated with 37.5 or 75 mg/L EMSCs-exo. PC12 cells were exposed to 400 µmol/L H2O2 and treated with EMSCs-exo at 37.5 or 75 mg/L. The protein and mRNA expressions of Arg1 and iNOS in the treated cells were determined with Western blotting and qRT- PCR, and the concentrations of IL- 6, IL-10, and IGF-1 in the supernatants were measured with ELISA. The viability and apoptosis of PC12 cells were detected using CCK-8 assay and flow cytometry. RESULTS: The isolated rat EMSCs showed high expressions of nestin, CD44, CD105, and vimentin. The obtained EMSCs-exo had a typical cup-shaped structure under transmission electron microscope with an average particle size of 142 nm and positivity for CD63, CD81, and TSG101 but not vimentin. In LPS-treated microglia, EMSCs-exo treatment at 75 mg/L significantly increased Arg1 protein level and lowered iNOS protein expression (P < 0.05). EMSCs-exo treatment at 75 mg/L, as compared with the lower concentration at 37.5 mg/L, more strongly increased Arg1 mRNA expression and IGF-1 and IL-10 production and decreased iNOS mRNA expression and IL-6 production in LPS-induced microglia, and more effectively promoted cell survival and decreased apoptosis rate of H2O2-induced PC12 cells (P < 0.05). CONCLUSION: EMSCs-exo at 75 mg/L can effectively reduce the proportion of M1 microglia and alleviate neuronal apoptosis under oxidative stress to promote neuronal survival, suggesting its potential in controlling secondary spinal cord injury.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Ratos , Animais , Microglia/metabolismo , Lipopolissacarídeos/efeitos adversos , Células PC12 , Interleucina-10 , Peróxido de Hidrogênio/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Ectoderma/metabolismo , Estresse Oxidativo , Traumatismos da Medula Espinal/metabolismo , RNA Mensageiro/metabolismo
8.
Dev Biol ; 508: 64-76, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38190932

RESUMO

Feathers originate as protofeathers before birds, in pterosaurs and basal dinosaurs. What characterizes a feather is not only its outgrowth, but its barb cells differentiation and a set of beta-corneous proteins. Reticula appear concomitantly with feathers, as small bumps on plantar skin, made only of keratins. Avian scales, with their own set of beta-corneous proteins, appear more recently than feathers on the shank, and only in some species. In the chick embryo, when feather placodes form, all the non-feather areas of the integument are already specified. Among them, midventral apterium, cornea, reticula, and scale morphogenesis appear to be driven by negative regulatory mechanisms, which modulate the inherited capacity of the avian ectoderm to form feathers. Successive dermal/epidermal interactions, initiated by the Wnt/ß-catenin pathway, and involving principally Eda/Edar, BMP, FGF20 and Shh signaling, are responsible for the formation not only of feather, but also of scale placodes and reticula, with notable differences in the level of Shh, and probably FGF20 expressions. This sequence is a dynamic and labile process, the turning point being the FGF20 expression by the placode. This epidermal signal endows its associated dermis with the memory to aggregate and to stimulate the morphogenesis that follows, involving even a re-initiation of the placode.


Assuntos
Ectoderma , Plumas , Animais , Embrião de Galinha , Plumas/metabolismo , Ectoderma/metabolismo , Evolução Biológica , Aves , Queratinas/metabolismo , Morfogênese
9.
Nature ; 626(7998): 357-366, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052228

RESUMO

Recently, several studies using cultures of human embryos together with single-cell RNA-seq analyses have revealed differences between humans and mice, necessitating the study of human embryos1-8. Despite the importance of human embryology, ethical and legal restrictions have limited post-implantation-stage studies. Thus, recent efforts have focused on developing in vitro self-organizing models using human stem cells9-17. Here, we report genetic and non-genetic approaches to generate authentic hypoblast cells (naive hPSC-derived hypoblast-like cells (nHyCs))-known to give rise to one of the two extraembryonic tissues essential for embryonic development-from naive human pluripotent stem cells (hPSCs). Our nHyCs spontaneously assemble with naive hPSCs to form a three-dimensional bilaminar structure (bilaminoids) with a pro-amniotic-like cavity. In the presence of additional naive hPSC-derived analogues of the second extraembryonic tissue, the trophectoderm, the efficiency of bilaminoid formation increases from 20% to 40%, and the epiblast within the bilaminoids continues to develop in response to trophectoderm-secreted IL-6. Furthermore, we show that bilaminoids robustly recapitulate the patterning of the anterior-posterior axis and the formation of cells reflecting the pregastrula stage, the emergence of which can be shaped by genetically manipulating the DKK1/OTX2 hypoblast-like domain. We have therefore successfully modelled and identified the mechanisms by which the two extraembryonic tissues efficiently guide the stage-specific growth and progression of the epiblast as it establishes the post-implantation landmarks of human embryogenesis.


Assuntos
Desenvolvimento Embrionário , Camadas Germinativas , Células-Tronco Pluripotentes , Humanos , Diferenciação Celular , Implantação do Embrião , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Camadas Germinativas/citologia , Camadas Germinativas/embriologia , Camadas Germinativas/metabolismo , Células-Tronco Pluripotentes/citologia , Interleucina-6/metabolismo , Gástrula/citologia , Gástrula/embriologia , Âmnio/citologia , Âmnio/embriologia , Âmnio/metabolismo , Ectoderma/citologia , Ectoderma/embriologia , Ectoderma/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo
10.
Dev Biol ; 506: 20-30, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052294

RESUMO

Cranial placodes are transient ectodermal thickenings that contribute to a diverse array of organs in the vertebrate head. They develop from a common territory, the pre-placodal region that over time segregates along the antero-posterior axis into individual placodal domains: the adenohypophyseal, olfactory, lens, trigeminal, otic, and epibranchial placodes. These placodes terminally differentiate into the anterior pituitary, the lens, and contribute to sensory organs including the olfactory epithelium, and inner ear, as well as several cranial ganglia. To study cranial placodes and their derivatives and generate cells for therapeutic purposes, several groups have turned to in vitro derivation of placodal cells from human embryonic stem cells (hESCs) or induced pluripotent stem cells (hiPSCs). In this review, we summarize the signaling cues and mechanisms involved in cranial placode induction, specification, and differentiation in vivo, and discuss how this knowledge has informed protocols to derive cranial placodes in vitro. We also discuss the benefits and limitations of these protocols, and the potential of in vitro cranial placode modeling in regenerative medicine to treat cranial placode-related pathologies.


Assuntos
Ectoderma , Crânio , Animais , Humanos , Vertebrados , Diferenciação Celular , Transdução de Sinais , Regulação da Expressão Gênica no Desenvolvimento
11.
Dev Biol ; 506: 85-94, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040078

RESUMO

The gill slits of fishes develop from an iterative series of pharyngeal endodermal pouches that contact and fuse with surface ectoderm on either side of the embryonic head. We find in the skate (Leucoraja erinacea) that all gill slits form via a stereotypical sequence of epithelial interactions: 1) endodermal pouches approach overlying surface ectoderm, with 2) focal degradation of ectodermal basement membranes preceding endoderm-ectoderm contact; 3) endodermal pouches contact and intercalate with overlying surface ectoderm, and finally 4) perforation of a gill slit occurs by epithelial remodelling, without programmed cell death, at the site of endoderm-ectoderm intercalation. Skate embryos express Fgf8 and Fgf3 within developing pharyngeal epithelia during gill slit formation. When we inhibit Fgf signalling by treating skate embryos with the Fgf receptor inhibitor SU5402 we find that endodermal pouch formation, basement membrane degradation and endodermal-ectodermal intercalation are unaffected, but that epithelial remodelling and gill slit perforation fail to occur. These findings point to a role for Fgf signalling in epithelial remodelling during gill slit formation in the skate and, more broadly, to an ancestral role for Fgf signalling during pharyngeal pouch epithelial morphogenesis in vertebrate embryos.


Assuntos
Ectoderma , Brânquias , Animais , Endoderma , Vertebrados , Morfogênese
12.
Dev Biol ; 507: 20-33, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38154769

RESUMO

The neural tube, the embryonic precursor to the brain and spinal cord, begins as a flat sheet of epithelial cells, divided into non-neural and neural ectoderm. Proper neural tube closure requires that the edges of the neural ectoderm, the neural folds, to elevate upwards and fuse along the dorsal midline of the embryo. We have previously shown that members of the claudin protein family are required for the early phases of chick neural tube closure. Claudins are transmembrane proteins, localized in apical tight junctions within epithelial cells where they are essential for regulation of paracellular permeability, strongly involved in apical-basal polarity, cell-cell adhesion, and bridging the tight junction to cytoplasmic proteins. Here we explored the role of Claudin-3 (Cldn3), which is specifically expressed in the non-neural ectoderm. We discovered that depletion of Cldn3 causes folic acid-insensitive primarily spinal neural tube defects due to a failure in neural fold fusion. Apical cell surface morphology of Cldn3-depleted non-neural ectodermal cells exhibited increased membrane blebbing and smaller apical surfaces. Although apical-basal polarity was retained, we observed altered Par3 and Pals1 protein localization patterns within the apical domain of the non-neural ectodermal cells in Cldn3-depleted embryos. Furthermore, F-actin signal was reduced at apical junctions. Our data presents a model of spina bifida, and the role that Cldn3 is playing in regulating essential apical cell processes in the non-neural ectoderm required for neural fold fusion.


Assuntos
Ectoderma , Crista Neural , Embrião de Galinha , Animais , Ectoderma/metabolismo , Crista Neural/metabolismo , Galinhas/metabolismo , Claudina-3/metabolismo , Tubo Neural , Claudinas/genética , Claudinas/metabolismo , Junções Íntimas/metabolismo
13.
Nat Commun ; 14(1): 8475, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123550

RESUMO

Vertebrate neural tube closure is associated with complex changes in cell shape and behavior, however, the relative contribution of these processes to tissue folding is not well understood. At the onset of Xenopus neural tube folding, we observed alternation of apically constricted and apically expanded cells. This apical domain heterogeneity was accompanied by biased cell orientation along the anteroposterior axis, especially at neural plate hinges, and required planar cell polarity signaling. Vertex models suggested that dispersed isotropically constricting cells can cause the elongation of adjacent cells. Consistently, in ectoderm, cell-autonomous apical constriction was accompanied by neighbor expansion. Thus, a subset of isotropically constricting cells may initiate neural plate bending, whereas a 'tug-of-war' contest between the force-generating and responding cells reduces its shrinking along the body axis. This mechanism is an alternative to anisotropic shrinking of cell junctions that are perpendicular to the body axis. We propose that apical domain changes reflect planar polarity-dependent mechanical forces operating during neural folding.


Assuntos
Placa Neural , Tubo Neural , Sistema Nervoso , Ectoderma , Morfogênese
14.
Molecules ; 28(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38138487

RESUMO

Inhibition of the Embryonic Ectoderm Development (EED) subunit in Polycomb Repressive Complex 2 (PRC2) can inhibit tumor growth. In this paper, we selected six experimentally designed EED competitive Inhibitors of the triazolopyrimidine derivatives class. We investigated the difference in the binding mode of the natural substrate to the Inhibitors and the effects of differences in the parent nuclei, heads, and tails of the Inhibitors on the inhibitory capacity. The results showed that the binding free energy of this class of Inhibitors was close to or lower compared to the natural substrate, providing an energetic basis for competitive inhibition. For the Inhibitors, the presence of a strong negatively charged group at the 6-position of the parent nucleus or the 8'-position of the head would make the hydrogen atom on the head imino group prone to flip, resulting in the vertical movement of the parent nucleus, which significantly decreased the inhibitory ability. When the 6-position of the parent nucleus was a nonpolar group, the parent nucleus would move horizontally, slightly decreasing the inhibitory ability. When the 8'-position of the head was methylene, it formed an intramolecular hydrophobic interaction with the benzene ring on the tail, resulting in a significant increase in inhibition ability.


Assuntos
Ectoderma , Simulação de Dinâmica Molecular , Ectoderma/metabolismo , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/metabolismo
15.
BMC Biol ; 21(1): 227, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864247

RESUMO

BACKGROUND: The flatworm planarian, Schmidtea mediterranea, has a large population of adult stem cells (ASCs) that replace any cell type during tissue turnover or regeneration. How planarian ASCs (called neoblasts) manage self-renewal with the ability to produce daughter cells of different cell lineages (multipotency) is not well understood. Chromatin remodeling complexes ultimately control access to DNA regions of chromosomes and together with specific transcription factors determine whether a gene is transcribed in a given cell type. Previous work in planarians determined that RNAi of core components of the BAF chromatin remodeling complex, brg1 and smarcc2, caused increased ASCs and failed regeneration, but how these cellular defects arise at the level of gene regulation in neoblasts is unknown. RESULTS: Here, we perform ATAC and RNA sequencing on purified neoblasts, deficient for the BAF complex subunits brg-1 and smarcc2. The data demonstrate that the BAF complex promotes chromatin accessibility and facilitates transcription at target loci, as in other systems. Interestingly, we find that the BAF complex enables access to genes known to be required for the generation of mesoderm- and ectoderm-derived lineages, including muscle, parenchymal cathepsin, neural, and epithelial lineages. BAF complex knockdowns result in disrupted differentiation into these cell lineages and functional consequences on planarian regeneration and tissue turnover. Notably, we did not detect a role for the BAF complex in neoblasts making endodermal lineages. CONCLUSIONS: Our study provides functional insights into how the BAF complex contributes to cell fate decisions in planarian ASCs in vivo.


Assuntos
Planárias , Animais , Planárias/genética , Montagem e Desmontagem da Cromatina , Ectoderma , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células-Tronco/metabolismo , Diferenciação Celular/genética
16.
Cells Dev ; 176: 203879, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844659

RESUMO

The vertebrate skull is formed by mesoderm and neural crest (NC) cells. The mesoderm contributes to the skull chordal domain, with the notochord playing an essential role in this process. The NC contributes to the skull prechordal domain, prompting investigation into the embryonic structures involved in prechordal neurocranium cartilage formation. The trabeculae cartilage, a structure of the prechordal neurocranium, arises at the convergence of prechordal plate (PCP), ventral midline (VM) cells of the diencephalon, and dorsal oral ectoderm. This study examines the molecular participation of these embryonic structures in gnathostome trabeculae development. PCP-secreted SHH induces its expression in VM cells of the diencephalon, initiating a positive feedback loop involving SIX3 and GLI1. SHH secreted by the VM cells of the diencephalon acts on the dorsal oral ectoderm, stimulating condensation of NC cells to form trabeculae. SHH from the prechordal region affects the expression of SOX9 in NC cells. BMP7 and SHH secreted by PCP induce NKX2.1 expression in VM cells of the diencephalon, but this does not impact trabeculae formation. Molecular cooperation between PCP, VM cells of the diencephalon, and dorsal oral ectoderm is crucial for craniofacial development by NC cells in the prechordal domain.


Assuntos
Proteínas Hedgehog , Crânio , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Crista Neural , Ectoderma , Cabeça
17.
Development ; 150(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37823343

RESUMO

The amino acid L-proline exhibits growth factor-like properties during development - from improving blastocyst development to driving neurogenesis in vitro. Addition of 400 µM L-proline to self-renewal medium drives naïve mouse embryonic stem cells (ESCs) to early primitive ectoderm-like (EPL) cells - a transcriptionally distinct primed or partially primed pluripotent state. EPL cells retain expression of pluripotency genes, upregulate primitive ectoderm markers, undergo a morphological change and have increased cell number. These changes are facilitated by a complex signalling network hinging on the Mapk, Fgfr, Pi3k and mTor pathways. Here, we use a factorial experimental design coupled with statistical modelling to understand which signalling pathways are involved in the transition between ESCs and EPL cells, and how they underpin changes in morphology, cell number, apoptosis, proliferation and gene expression. This approach reveals pathways which work antagonistically or synergistically. Most properties were affected by more than one inhibitor, and each inhibitor blocked specific aspects of the naïve-to-primed transition. These mechanisms underpin progression of stem cells across the in vitro pluripotency continuum and serve as a model for pre-, peri- and post-implantation embryogenesis.


Assuntos
Ectoderma , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Ectoderma/metabolismo , Prolina/metabolismo , Transdução de Sinais , Células-Tronco Embrionárias , Diferenciação Celular/genética
18.
Nat Commun ; 14(1): 6346, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816738

RESUMO

Humans and other tetrapods are considered to require apical-ectodermal-ridge (AER) cells for limb development, and AER-like cells are suggested to be re-formed to initiate limb regeneration. Paradoxically, the presence of AER in the axolotl, a primary model organism for regeneration, remains controversial. Here, by leveraging a single-cell transcriptomics-based multi-species atlas, composed of axolotl, human, mouse, chicken, and frog cells, we first establish that axolotls contain cells with AER characteristics. Further analyses and spatial transcriptomics reveal that axolotl limbs do not fully re-form AER cells during regeneration. Moreover, the axolotl mesoderm displays part of the AER machinery, revealing a program for limb (re)growth. These results clarify the debate about the axolotl AER and the extent to which the limb developmental program is recapitulated during regeneration.


Assuntos
Ambystoma mexicanum , Galinhas , Humanos , Animais , Camundongos , Extremidades , Ectoderma , Regulação da Expressão Gênica no Desenvolvimento
19.
Development ; 150(19)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37756587

RESUMO

The Foxi3 transcription factor, expressed in the neural plate border at the end of gastrulation, is necessary for the formation of posterior placodes and is thus important for ectodermal patterning. We have created two knock-in mouse lines expressing GFP or a tamoxifen-inducible Cre recombinase to show that Foxi3 is one of the earliest genes to label the border between the neural tube and epidermis, and that Foxi3-expressing neural plate border progenitors contribute primarily to cranial placodes and epidermis from the onset of expression, but not to the neural crest or neural tube lineages. By simultaneously knocking out Foxi3 in neural plate border cells and following their fates, we show that neural plate border cells lacking Foxi3 contribute to all four lineages of the ectoderm - placodes, epidermis, crest and neural tube. We contrast Foxi3 with another neural plate border transcription factor, Zic5, the progenitors of which initially contribute broadly to all germ layers until gastrulation and gradually become restricted to the neural crest lineage and dorsal neural tube cells. Our study demonstrates that Foxi3 uniquely acts early at the neural plate border to restrict progenitors to a placodal and epidermal fate.


Assuntos
Placa Neural , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Placa Neural/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ectoderma/metabolismo , Crista Neural/metabolismo , Fatores de Transcrição Forkhead/metabolismo
20.
Nat Commun ; 14(1): 5941, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741818

RESUMO

The ability of the pluripotent epiblast to contribute progeny to all three germ layers is thought to be lost after gastrulation. The later-forming neural crest (NC) rises from ectoderm and it remains poorly understood how its exceptionally high stem-cell potential to generate mesodermal- and endodermal-like derivatives is obtained. Here, we monitor transcriptional changes from gastrulation to neurulation using single-cell-Multiplex-Spatial-Transcriptomics (scMST) complemented with RNA-sequencing. We show maintenance of pluripotency-like signature (Nanog, Oct4/PouV, Klf4-positive) in undecided pan-ectodermal stem-cells spanning the entire ectoderm late during neurulation with ectodermal patterning completed only at the end of neurulation when the pluripotency-like signature becomes restricted to NC, challenging our understanding of gastrulation. Furthermore, broad ectodermal pluripotency-like signature is found at multiple axial levels unrelated to the NC lineage the cells later commit to, suggesting a general role in stemness enhancement and proposing a mechanism by which the NC acquires its ability to form derivatives beyond "ectodermal-capacity" in chick and mouse embryos.


Assuntos
Ectoderma , Células-Tronco Neurais , Animais , Camundongos , Crista Neural , Camadas Germinativas , Galinhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...